Centre Number	Candidate Number	Name

UNIVERSITY OF CAMBRIDGE INTERNATIONAL EXAMINATIONS International General Certificate of Secondary Education

CHEMISTRY

0620/02

Paper 2 (Core)

May/June 2005

1 hour 15 minutes

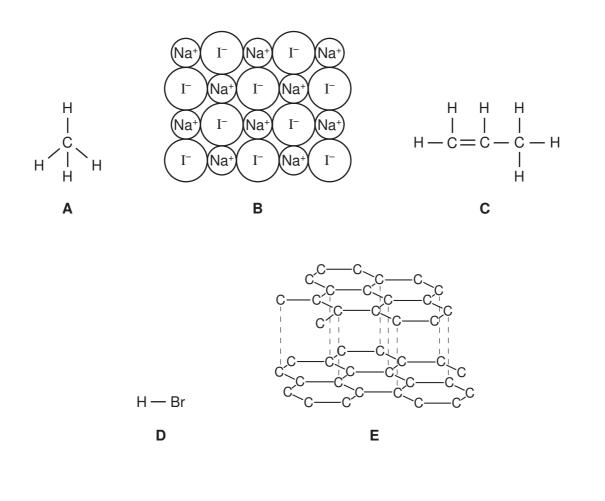
Candidates answer on the Question Paper. No Additional Materials required.

READ THESE INSTRUCTIONS FIRST

Write your Centre number, candidate number and name on all the work you hand in. Write in dark blue or black pen in the spaces provided on the Question Paper. You may use a pencil for any diagrams, graphs or rough working. Do not use staples, paper clips, highlighters, glue or correction fluid.

Answer all questions.

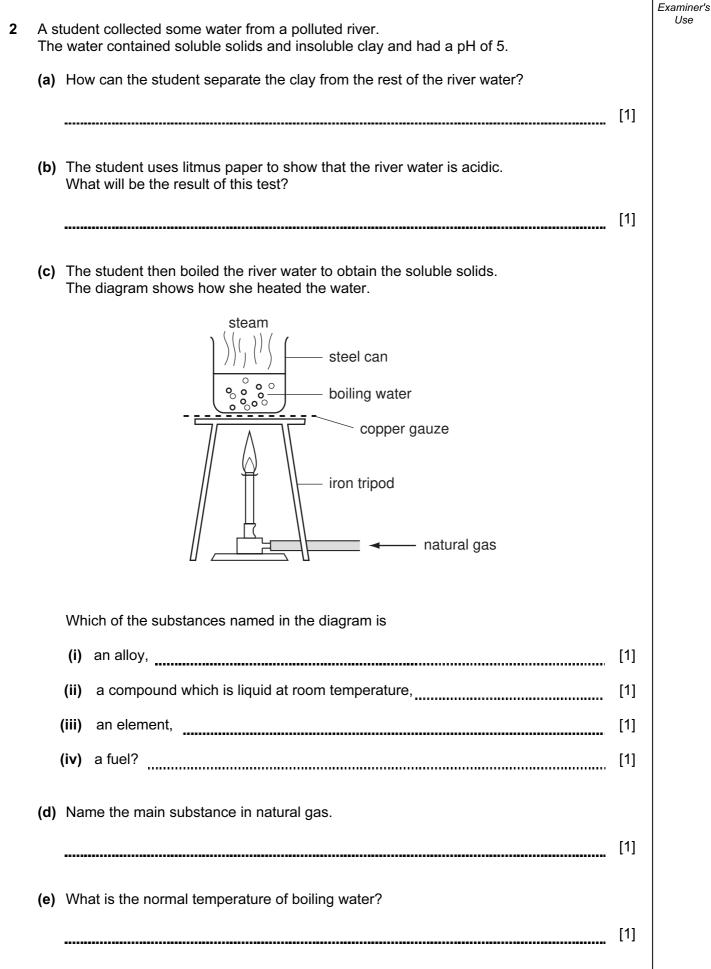
The number of marks is given in brackets [] at the end of each question or part question. A copy of the Periodic Table is printed on page 16.


	For Examiner's Use
	1
_	2
at the	3
or Is in	4
	5
provided.	6
	Total

IB05 06_0620_02/4RP © UCLES 2005

UNIVERSITY of CAMBRIDGE International Examinations

[Turn over


1 The structures of some substances are shown below.

(a)	Ans	nswer these questions using the letters A, B, C, D or E.				
	(i)	Which structure is methane?	[1]			
	(ii)	Which two structures are giant structures?and	[1]			
	(iii)	Which two structures are hydrocarbons? and	[1]			
	(iv)	Which structure contains ions?	[1]			
	(v)	Which two structures have very high melting points?				
		and	[1]			

(b)	(b) Structure E is a form of carbon.						
	(i)	What is the name of Put a ring around t					
		carbide	graphite	lead	poly(hexene)	[1]	
	(ii)	Name another forn	n of carbon.				
						[1]	
(c)	Wri	te the simplest form	ula for substance B				
						[1]	
(d)		ubstance D an elem blain your answer.	nent or a compound	?			
	•••••					[1]	

3

For

(f) After the student boiled off the water, she analysed the white powder on the inside of the steel can. The table shows her results.

name of ion	formula of ion	mass of ion present /milligrams
calcium	Ca ²⁺	16
carbonate	CO3 ²⁻	35
chloride	C <i>l</i> ⁻	8
nitrate	NO_3^-	4
sodium	Na⁺	8
sulphate	SO4 ²⁻	6

(i) Which positive ion had the greatest concentration in the sample of river water?

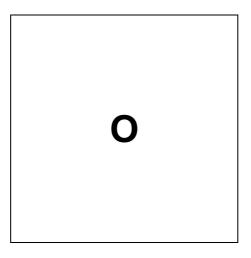
[1]

(ii) Complete the following equation to show how a sodium ion is formed from a sodium atom.

Na → Na⁺ +[1]

- (g) Instead of using natural gas, the student could have used butane to heat the water. The formula of butane is C_4H_{10} .
 - (i) What products are formed when butane burns in excess air?

[1]


(ii) Name the poisonous gas formed when butane undergoes incomplete combustion.

[1]

- 3 Ammonia is a gas which forms an alkaline solution when dissolved in water.
 - (a) Complete the diagram below to show the arrangement of the molecules in ammonia gas.

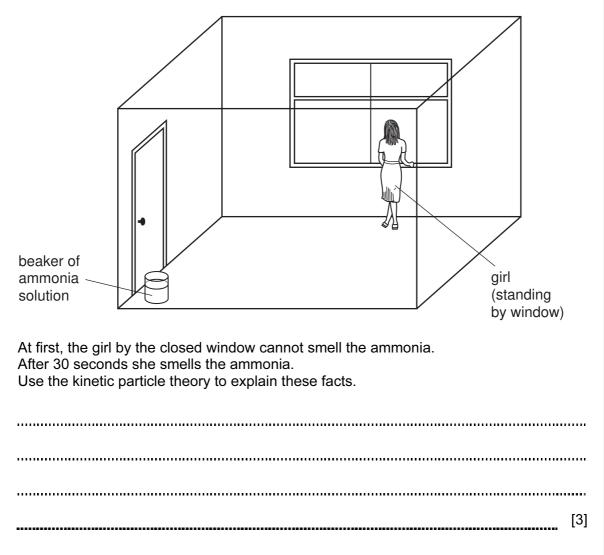
represents a single molecule of ammonia.

[2]

(b) Which one of the following values is most likely to represent the pH of a dilute solution of ammonia? Put a ring around the correct answer. pH2 pH6 pH7 pH9 [1] (c) The structure of the ammonia molecule is shown below. H N H (i) Write the simplest formula for ammonia. [1] (ii) Describe the type of bonding in a molecule of ammonia. [1] (iii) Ammonia is a gas at room temperature. Suggest why ammonia has a low boiling point. [1]

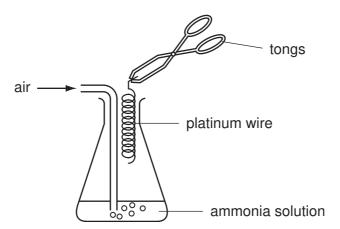
- (d) Many fertilisers contain ammonium sulphate.
 - (i) Which acid must be added to ammonia solution to make ammonium sulphate? Put a ring around the correct answer.

7


HC1	HNO₃	H ₃ PO ₄	H_2SO_4	[1]

(ii) Fill in the missing words in the following sentence using two of the words from the list.

air hydrogen nitrogen soil sodium water


Fertilisers are needed in agriculture to replace the _____, phosphorus and other elements which are removed from the ______ when crops are grown.

(e) A solution of ammonia has a strong smell.A beaker of ammonia solution is put in the corner of a room which is free of draughts.

[1]

(f) The diagram shows the apparatus used for oxidising ammonia in the laboratory.

First, nitrogen(II) oxide, NO, is produced. This then reacts with oxygen to form nitrogen(IV) oxide, NO₂.

(i) Where does the oxygen come from in this reaction?

[1]

(ii) Balance the equation for the reaction of nitrogen(II) oxide with oxygen.

 $2NO + O_2 \rightleftharpoonsNO_2$ [1]

(iii) What is the meaning of the symbol ⇐ ?

(iv) The platinum wire acts as a catalyst in the reaction. As the reaction takes place, the wire begins to glow red hot.What does this show about the reaction?

[1]

[Turn over

For

Use

4

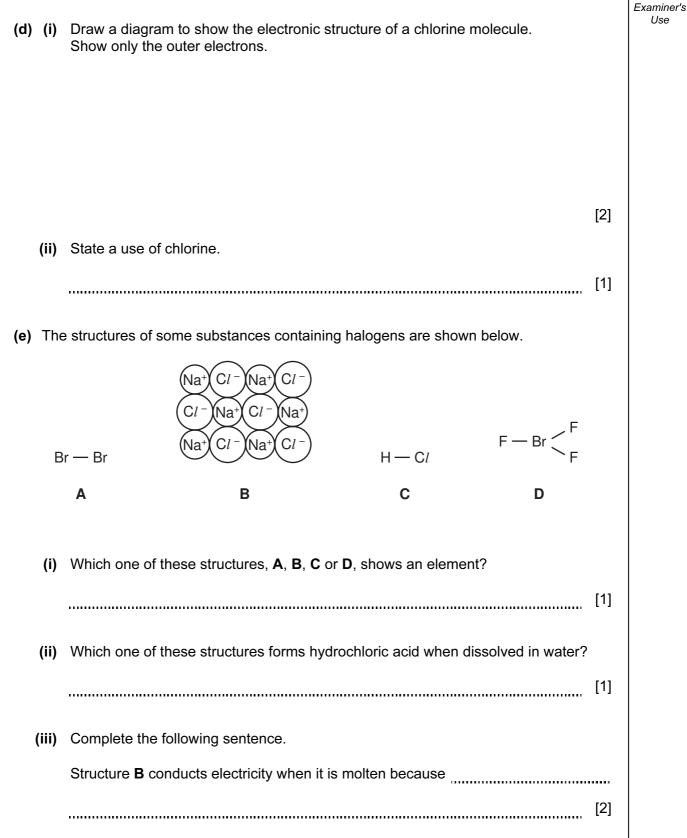
	10	For Examiner's
(e) Sor	ne oil companies 'crack' the ethane produced when petroleum is distilled.	Use
(i)	Complete the equation for this reaction.	
	$C_2H_6 \longrightarrow C_2H_4 + \dots$ [1]	
(ii)	Describe the process of fractional distillation which is used to separate the different fractions in petroleum.	
	[2]	
(iii)	State a use for the following petroleum fractions.	
	petrol fraction	
	lubricating fraction [2]	

For Examiner's Use

- **5** The halogens are a group of diatomic non-metals showing a trend in colour, state and reactivity.
 - (a) In this description, what is the meaning of
 - (i) diatomic,
 [1]

 (ii) state?
 [1]
 - (b) The table gives some information about some of the halogens.

element	melting point /°C	boiling point /°C	colour	state at room temperature
chlorine	-101	-35	green	
bromine	-7	+59		
iodine	+114		grey-black	


- (i) Complete the last column in the table to show the state of each of the halogens at room temperature. [2]
- (ii) State the colour of bromine.
 - [1]
- (iii) Suggest a value for the boiling point of iodine.

[1]

(c) Complete the word equation for the reaction of chlorine with potassium iodide.

chlorine	+	potassium iodide	→ 	+	
----------	---	------------------	-------	---	--

[2]

For

Use

(f)	Ast	atine, At, is below iodine in Group VII of the Periodic Table.	
	(i)	In which Period of the Periodic Table is astatine?	
		[[1]
	(ii)	How many protons does astatine have in its nucleus?	[1]
	(iii)	Astatine has many isotopes. What do you understand by the term <i>isotopes</i> ?	
			[1]
	(iv)	The most common isotope of astatine has a nucleon number (mass number) 210. Calculate the number of neutrons in this isotope of astatine.	of
		[[1]

13

For Examiner's Use

[2]

[2]

[1]

[1]

The electroplating of iron with chromium involves four stages. The iron object is cleaned with sulphuric acid, then washed with water. 1. 2. The iron is plated with copper. 3. It is then plated with nickel to prevent corrosion. 4. It is then plated with chromium. (a) The equation for stage 1 is $Fe + H_2SO_4 \longrightarrow FeSO_4 + H_2$ (i) Write a word equation for this reaction. (ii) Describe a test for the gas given off in this reaction. test result (b) The diagram shows how iron is electroplated with copper. rod of iron object pure copper copper(II) sulphate solution (i) Choose a word from the list below which describes the iron object. Put a ring around the correct answer. anion anode cathode cation (ii) What is the purpose of the copper(II) sulphate solution?

.....

https://xtremepape.rs/

6

	(iii)	Describe what happens during the electroplating to
		the iron object,
		the rod of pure copper. [2]
	(iv)	Describe a test for copper(II) ions.
		test
		result
		[3]
(c)	Sug	ggest why chromium is used to electroplate articles.
		[1]
(d)		e information below shows the reactivity of chromium, copper and iron with warm lrochloric acid.
	chr	omium – few bubbles of gas produced every second
	сор	oper – no bubbles of gas produced
	iror	 many bubbles of gas produced every second
	Put	these three metals in order of their reactivity with hydrochloric acid.
		Most reactive \rightarrow
		Least reactive \rightarrow
		[1]

Every reasonable effort has been made to trace all copyright holders where the publishers (i.e. UCLES) are aware that third-party material has been reproduced. The publishers would be pleased to hear from anyone whose rights they have unwittingly infringed.

University of Cambridge International Examinations is part of the University of Cambridge Local Examinations Syndicate (UCLES), which is itself a department of the University of Cambridge.

[]							1						1	6													
Group	0	⁴ He	Helium 2	20	Ne	Neon 10	40	Ar	Argon 18	84	Кr	Krypton 36	131	Xe	Xenon 54		Вл	Radon 86				175			-	<u></u>	Lawrencium 103
	NII/			19	ш	Fluorine 9	35.5	C1	Chlorine 17	80	Br	Bromine 35	127	Ι	lodine 53		At	Astatine 85			ļ	173	Ytterbium	0/		SS I	102 102
	N			16	0	Oxygen 8	32		5	62	Se	Selenium 34	128	Те	Tellurium 52		Ро	Polonium 84				169	Thulium	69		Ma	Mendelevium 101
	Ν			14	z	Nitrogen 7	31	٩	Phosphorus 15	75	As	Arsenic 33	122	Sb	Antimony 51	209	Bi	Bismuth 83			!	167 7 -	:rbium	68	L	ב ב	Fermium 100
	≥			12	ပ	Carbon 6	28	Si	Silicon 14	73		Germanium 32	119	Sn	50 Tin	207	РЬ	Lead 82			-	165	Holmium	6/	L	ES I	Einsteinium 99
				11	ш	Boron 5	27	1 H	Aluminium 13	70	Ga	Gallium 31	115	In	Indium 49	204	Τl	Thallium 81				162	Dysprosium	66	.0	5	Californium 98
											Zn	Zinc 30	112	Cd	Cadmium 48	201	Hg	Mercury 80				159 H	Terbium	65	ā	י מא	Berkelium 97
										64	Cu	Copper 29	108	Ag	Silver 47	197	Au	Gold 79			!	157	dolinium	64	Ċ		Curium 96
										59	ÏZ	Nickel 28	106	Pd	Palladium 46	195	Ę	Platinum 78			1	152	Europium	63		Am	Americium 95
										59	ပိ	Cobalt 27	103	Rh	Rhodium 45	192	Ir	Iridium 77				150	E		Ċ	۲ ۲	Plutonium 94
		- T	Hydrogen 1							56	Fe	Iron 26	101	Ru	Ruthenium 44	190	os	Osmium 76					Promethium	61		dN :	Neptunium 93
										55	Mn	Manganese 25		Ц	Technetium 43	186	Re	Rhenium 75				144	Neodymium	60	238		Uranium 92
										52	ບັ	Chromium 24	96	Mo	Molybdenum 42	184	8	Tungsten 74			:	141 2	Praseodymium	29	ć	ra	Protactinium 91
										51	>	Vanadium 23	93	qN	Niobium 41	181	Та	Tantalum 73				140 140	Cerium	28	232	ב י	Thorium 90
										48	Ħ	Titanium 22	91	Zr	Zirconium 40	178	Ηf	Hafnium 72									nic) number
							1			45	Sc	Scandium 21	68	>	Yttrium 39	139	La	Lanthanum 57 *	227	Actinium	80	lseries	eries	- volotivo ovito	a = relative atomic mass	\mathbf{X} = atomic symbol	b = proton (atomic) number
	=			6	Be	Benyllium 4	24	Mg	Magnesium 12	40	Ca	Calcium 20	88	Sr	Strontium 38	137	Ba	Barium 56	226	Radium 00	8	*58-71 Lanthanoid series	90-103 Actinoid series			×	Ď
	_			7	:	Lithium 3	23	Na	Sodium 11	39	¥	Potassium 19	85	Rb	Rubidium 37	133	Cs	Caesium 55	Ľ	Francium	0/	*58-71 Lá	90-103 /			key	٩

The volume of one mole of any gas is $24 \, dm^3$ at room temperature and pressure (r.t.p.).